Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Sci Technol ; 58(9): 4438-4449, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330552

RESUMO

Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.


Assuntos
Peróxido de Hidrogênio , Piridinas , Peróxido de Hidrogênio/química , Oxirredução , Carbonatos
2.
Nanoscale ; 16(12): 6010-6016, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38404219

RESUMO

The efficient and stable production of hydrogen (H2) through Pt-containing photocatalysts remains a great challenge. Herein, we develop an effective strategy to selectively and uniformly anchor Pt NPs (∼1.2 nm) on a covalent triazine-based framework photocatalyst via in situ derived bridging ligands. Compared to Pt/CTF-1, the obtained Pt/AT-CTF-1 exhibits a considerable photocatalytic H2 evolution rate of 562.9 µmol g-1 h-1 under visible light irradiation. Additionally, the strong interaction between the Pt NPs and in situ derived bridging ligands provides remarkable stability to Pt/AT-CTF-1. Experimental investigations and photo/chemical characterization reveal the synergy of the in situ derived bridging ligands in Pt/AT-CTF-1, which can selectively anchor the Pt NPs with homogeneous sizes and efficiently improve the transmission of charge carriers. This work provides a new perspective toward stabilizing ultrasmall nanoclusters and facilitating electron transfer in photocatalytic H2 evolution materials.

3.
Microbiome ; 11(1): 142, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365664

RESUMO

BACKGROUND: Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples. RESULTS: Abundant bacteria that carry C-P lyase clusters were identified in plankton samples from freshwater Lakes Dianchi and Taihu during Microcystis bloom periods. Metagenomic analysis of 162 non-axenic laboratory strains of cyanobacteria (consortia cultures containing heterotrophic bacteria) showed that 20% (128/647) of high-quality bins from eighty of these consortia encode intact C-P lyase clusters, with an abundance ranging up to nearly 13%. Phycospheric bacterial phosphonate catabolism genes were expressed continually across bloom seasons, as demonstrated through metatranscriptomic analysis using sixteen field Microcystis aggregate samples. Coculturing experiments revealed that although Microcystis cultures did not catabolize methylphosphonate when axenic, they demonstrated sustained growth when cocultured with phosphonate-utilizing phycospheric bacteria in medium containing methylphosphonate as the sole source of phosphorus. CONCLUSIONS: The recruitment of heterotrophic phosphonate-degrading phycospheric bacteria by cyanobacteria is a hedge against phosphorus scarcity by facilitating phosphonate availability. Cyanobacterial consortia are likely primary contributors to aquatic phosphonate mineralization, thereby facilitating sustained cyanobacterial growth, and even bloom maintenance, in phosphate-deficient waters. Video Abstract.


Assuntos
Cianobactérias , Microcystis , Organofosfonatos , Microcystis/genética , Microcystis/metabolismo , Ecossistema , Organofosfonatos/metabolismo , Cianobactérias/genética , Fitoplâncton , Lagos/microbiologia , Fósforo/metabolismo
4.
World J Emerg Med ; 14(2): 106-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911055

RESUMO

BACKGROUND: To promote the shared decision-making (SDM) between patients and doctors in pediatric outpatient departments, this study was designed to validate artificial intelligence (AI) -initiated medical tests for children with fever. METHODS: We designed an AI model, named Xiaoyi, to suggest necessary tests for a febrile child before visiting a pediatric outpatient clinic. We calculated the sensitivity, specificity, and F1 score to evaluate the efficacy of Xiaoyi's recommendations. The patients were divided into the rejection and acceptance groups. Then we analyzed the rejected examination items in order to obtain the corresponding reasons. RESULTS: We recruited a total of 11,867 children with fever who had used Xiaoyi in outpatient clinics. The recommended examinations given by Xiaoyi for 10,636 (89.6%) patients were qualified. The average F1 score reached 0.94. A total of 58.4% of the patients accepted Xiaoyi's suggestions (acceptance group), and 41.6% refused (rejection group). Imaging examinations were rejected by most patients (46.7%). The tests being time-consuming were rejected by 2,133 patients (43.2%), including rejecting pathogen studies in 1,347 patients (68.5%) and image studies in 732 patients (31.8%). The difficulty of sampling was the main reason for rejecting routine tests (41.9%). CONCLUSION: Our model has high accuracy and acceptability in recommending medical tests to febrile pediatric patients, and is worth promoting in facilitating SDM.

5.
Environ Sci Technol ; 57(12): 5034-5045, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36916663

RESUMO

Traditional methods cannot efficiently recover Cu from Cu(II)-EDTA wastewater and encounter the formation of secondary contaminants. In this study, an ozone/percarbonate (O3/SPC) process was proposed to efficiently decomplex Cu(II)-EDTA and simultaneously recover Cu. The results demonstrate that the O3/SPC process achieves 100% recovery of Cu with the corresponding kobs value of 0.103 min-1 compared with the typical •OH-based O3/H2O2 process (81.2%, 0.042 min-1). The carbonate radical anion (CO3•-) is generated from the O3/SPC process and carries out the targeted attack of amino groups of Cu(II)-EDTA for decarboxylation and deamination processes, resulting in successive cleavage of Cu-O and Cu-N bonds. In comparison, the •OH-based O3/H2O2 process is predominantly responsible for the breakage of Cu-O bonds via decarboxylation and formic acid removal. Moreover, the released Cu(II) can be transformed into stable copper precipitates by employing an endogenous precipitant (CO32-), accompanied by toxic-free byproducts in the O3/SPC process. More importantly, the O3/SPC process exhibits excellent metal recovery in the treatment of real copper electroplating wastewater and other metal-EDTA complexes. This study provides a promising technology and opens a new avenue for the efficient decomplexation of metal-organic complexes with simultaneous recovery of valuable metal resources.


Assuntos
Complexos de Coordenação , Ozônio , Poluentes Químicos da Água , Águas Residuárias , Cobre , Ácido Edético/química , Peróxido de Hidrogênio , Oxirredução , Carbonatos , Poluentes Químicos da Água/química
6.
Zhongguo Zhong Yao Za Zhi ; 48(2): 349-355, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725224

RESUMO

The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Salvia miltiorrhiza/química , Reguladores de Crescimento de Plantas/análise , Raízes de Plantas/química , Ácido Rosmarínico
7.
Nucleic Acids Res ; 51(D1): D315-D327, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36408909

RESUMO

tRNA molecules contain dense, abundant modifications that affect tRNA structure, stability, mRNA decoding and tsRNA formation. tRNA modifications and related enzymes are responsive to environmental cues and are associated with a range of physiological and pathological processes. However, there is a lack of resources that can be used to mine and analyse these dynamically changing tRNA modifications. In this study, we established tModBase (https://www.tmodbase.com/) for deciphering the landscape of tRNA modification profiles from epitranscriptome data. We analysed 103 datasets generated with second- and third-generation sequencing technologies and illustrated the misincorporation and termination signals of tRNA modification sites in ten species. We thus systematically demonstrate the modification profiles across different tissues/cell lines and summarize the characteristics of tRNA-associated human diseases. By integrating transcriptome data from 32 cancers, we developed novel tools for analysing the relationships between tRNA modifications and RNA modification enzymes, the expression of 1442 tRNA-derived small RNAs (tsRNAs), and 654 DNA variations. Our database will provide new insights into the features of tRNA modifications and the biological pathways in which they participate.


Assuntos
Bases de Dados Genéticas , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo
8.
Curr Med Sci ; 42(6): 1285-1296, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544038

RESUMO

OBJECTIVE: Runt-related transcription factor 1 (RUNX1) has been proven to be over-expressed and vital in many malignancies. However, its role in cervical cancer is still unclear. METHODS: Some online databases (Oncomine, GEPIA, UALCAN, LinkedOmics, and others) were used to explore the expression level, prognostic significance, and gene mutation characteristics of RUNX1 in cervical cancer. The protein levels of RUNX1 in cervical cancer were measured by immunohistochemistry (IHC). The functional changes of cervical cancer cells were measured in vitro after decreasing RUNX1. RESULTS: Bioinformatic results revealed that RUNX1 was upregulated in cervical cancer compared to normal tissues. Moreover, over-expression of RUNX1 was significantly correlated with cervical cancer patients' clinical parameters (e.g., individual cancer stages, patients' age, nodal metastasis status, and others). Meanwhile, functional enrichment analysis of RUNX1-related genes indicated that RUNX1 was mainly involved in the epithelial-mesenchymal transition (EMT) process in cervical cancer. Furthermore, RUNX1 may be upregulated by hsamiR-616-5p and hsa-miR-766 identified by miRDB, TargetScan, and miRWalk. Finally, RUNX1 was upregulated in cervical cancer compared to normal tissues by IHC in collected cervical cancer samples. The invasion and migration abilities of cervical cancer cells were significantly reduced by repressing EMT after knocking down RUNX1 in vitro. CONCLUSION: RUNX1 was highly expressed in cervical cancer, and upregulated RUNX1 could significantly promote the invasive abilities of cervical cancer cells by inducing EMT. Therefore, RUNX1 may be a potential biomarker for early diagnosis and targeted therapy of cervical cancer.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Estadiamento de Neoplasias , Prognóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Transição Epitelial-Mesenquimal
9.
Angew Chem Int Ed Engl ; 61(50): e202214145, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251617

RESUMO

Limited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN- ) at the cathode and then converting the generated reduction products into nitrogen (N2 ) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN- and cathode, inducing the preferential enrichment of CN- to the cathode. CN- is hydrogenated by atomic hydrogen at the cathode to methylamine/ammonia, which are further oxidized into N2 by free chlorine derived from the anode. This paper provides a new idea for realizing the unconventional and unrealizable reactions in the electrocatalytic system.

10.
World J Pediatr ; 18(8): 545-552, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861938

RESUMO

BACKGROUND: Human adenovirus (HAdV) infection can cause a variety of diseases. It is a major pathogen of pediatric acute respiratory tract infections (ARIs) and can be life-threatening in younger children. We described the epidemiology and subtypes shifting of HAdV among children with ARI in Guangzhou, China. METHODS: We conducted a retrospective study of 161,079 children diagnosed with acute respiratory illness at the Guangzhou Women and Children's Medical Center between 2010 and 2021. HAdV specimens were detected by real-time PCR and the hexon gene was used for phylogenetic analysis. RESULTS: Before the COVID-19 outbreak in Guangzhou, the annual frequency of adenovirus infection detected during this period ranged from 3.92% to 13.58%, with an epidemic peak every four to five years. HAdV demonstrated a clear seasonal distribution, with the lowest positivity in March and peaking during summer (July or August) every year. A significant increase in HAdV cases was recorded for 2018 and 2019, which coincided with a shift in the dominant HAdV subtype from HAdV-3 to HAdV-7. The latter was associated with a more severe disease compared to HAdV-3. The average mortality proportion for children infected with HAdV from 2016 to 2019 was 0.38% but increased to 20% in severe cases. After COVID-19 emerged, HAdV cases dropped to 2.68%, suggesting that non-pharmaceutical interventions probably reduced the transmission of HAdV in the community. CONCLUSION: Our study provides the foundation for the understanding of the epidemiology of HAdV and its associated risks in children in Southern China.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , COVID-19 , Infecções Respiratórias , Infecções por Adenovirus Humanos/diagnóstico , Infecções por Adenovirus Humanos/epidemiologia , Adenovírus Humanos/genética , Criança , China/epidemiologia , Feminino , Humanos , Lactente , Epidemiologia Molecular , Filogenia , Infecções Respiratórias/diagnóstico , Estudos Retrospectivos
11.
Chemosphere ; 300: 134520, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398067

RESUMO

The effective treatment of pesticide wastewater with high organic content, complex composition and high-toxicity has attracted enormous attention of researchers. This work proposes a new idea for removing the pesticide wastewater with simultaneous resource recovery, which is different from the traditional view of mineralization of pesticide wastewater via composite technology. This novel strategy involved a sequential three-step treatment: (a) acidic Ozonation process, to remove the venomous aromatic heterocyclic compounds; (b) hydrolysis and ozonation in alkaline conditions, enhancing the biodegradability of pesticide wastewater, mainly due to the dehalogenation, elimination of C=C bonds and production of low molecular-weight carboxylate anions; (c) the final step is anaerobic biological reactions. Based on the characterizations, this two-stage acidic-alkaline ozonation can efficiently degraded the virulence of pesticide wastewater and enhance its biodegradability from 0.08 to 0.32. The final anaerobic biochemical treatment can stably remove the residuals and convert the low molecular-weight organics into CH4, achieving the resource recovery. This work explored the pH-dependent of ozonized degradation of pesticide wastewater and gives a new perspective of wastewater treatment.


Assuntos
Ozônio , Praguicidas , Poluentes Químicos da Água , Anaerobiose , Ozônio/química , Tecnologia , Águas Residuárias/química , Poluentes Químicos da Água/análise
12.
Water Res ; 217: 118385, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405550

RESUMO

Aquatic ecosystems comprise almost half of total global methane emissions. Recent evidence indicates that a few strains of cyanobacteria, the predominant primary producers in bodies of water, can produce methane under oxic conditions with methylphosphonate serving as substrate. In this work, we have screened the published 2 568 cyanobacterial genomes for genetic elements encoding phosphonate-metabolizing enzymes. We show that phosphonate degradation (phn) gene clusters are widely distributed in filamentous cyanobacteria, including several bloom-forming genera. Algal growth experiments revealed that methylphosphonate is an alternative phosphorous source for four of five tested strains carrying phn clusters, and can sustain cellular metabolic homeostasis of strains under phosphorus stress. Liberation of methane by cyanobacteria in the presence of methylphosphonate occurred mostly during the light period of a 12 h/12 h diurnal cycle and was suppressed in the presence of orthophosphate, features that are consistent with observations in natural aquatic systems under oxic conditions. The results presented here demonstrate a genetic basis for ubiquitous methane emission via cyanobacterial methylphosphonate mineralization, while contributing to the phosphorus redox cycle.


Assuntos
Cianobactérias , Organofosfonatos , Cianobactérias/genética , Cianobactérias/metabolismo , Ecossistema , Metano , Compostos Organofosforados , Fósforo/metabolismo
13.
Mol Ther Nucleic Acids ; 27: 751-762, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35003892

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3'CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.

14.
Nucleic Acids Res ; 50(D1): D421-D431, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755848

RESUMO

tRNA-derived small RNA (tsRNA), a novel type of regulatory small noncoding RNA, plays an important role in physiological and pathological processes. However, the understanding of the functional mechanism of tsRNAs in cells and their role in the occurrence and development of diseases is limited. Here, we integrated multiomics data such as transcriptome, epitranscriptome, and targetome data, and developed novel computer tools to establish tsRFun, a comprehensive platform to facilitate tsRNA research (http://rna.sysu.edu.cn/tsRFun/ or http://biomed.nscc-gz.cn/DB/tsRFun/). tsRFun evaluated tsRNA expression profiles and the prognostic value of tsRNAs across 32 types of cancers, identified tsRNA target molecules utilizing high-throughput CLASH/CLEAR or CLIP sequencing data, and constructed the interaction networks among tsRNAs, microRNAs, and mRNAs. In addition to its data presentation capabilities, tsRFun offers multiple real-time online tools for tsRNA identification, target prediction, and functional enrichment analysis. In summary, tsRFun provides a valuable data resource and multiple analysis tools for tsRNA investigation.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs/genética , Neoplasias/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Software , Sequenciamento de Cromatina por Imunoprecipitação , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , MicroRNAs/classificação , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/mortalidade , Conformação de Ácido Nucleico , Prognóstico , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/classificação , RNA de Transferência/metabolismo , Análise de Sobrevida , Transcriptoma
16.
Front Cell Dev Biol ; 9: 670435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124052

RESUMO

The unfolded protein response (UPR) plays important roles in various cells that have a high demand for protein folding, which are involved in the process of cell differentiation and development. Here, we separately knocked down the three sensors of the UPR in myoblasts and found that PERK knockdown led to a marked transformation in myoblasts from a fusiform to a rounded morphology, which suggests that PERK is required for early myoblast differentiation. Interestingly, knocking down PERK induced reprogramming of C2C12 myoblasts into stem-like cells by altering the miRNA networks associated with differentiation and stemness maintenance, and the PERK-ATF4 signaling pathway transactivated muscle differentiation-associated miRNAs in the early stage of myoblast differentiation. Furthermore, we identified Ppp1cc as a direct target gene of miR-128 regulated by the PERK signaling pathway and showed that its repression is critical for a feedback loop that regulates the activity of UPR-associated signaling pathways, leading to cell migration, cell fusion, endoplasmic reticulum expansion, and myotube formation during myoblast differentiation. Subsequently, we found that the RNA-binding protein ARPP21, encoded by the host gene of miR-128-2, antagonized miR-128 activity by competing with it to bind to the 3' untranslated region (UTR) of Ppp1cc to maintain the balance of the differentiation state. Together, these results reveal the crucial role of PERK signaling in myoblast maintenance and differentiation and identify the mechanism underlying the role of UPR signaling as a major regulator of miRNA networks during early differentiation of myoblasts.

17.
Exp Cell Res ; 400(2): 112492, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529710

RESUMO

DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.


Assuntos
Adenina/análogos & derivados , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Diferenciação Celular , Epigênese Genética , Desenvolvimento Muscular , Músculo Esquelético/patologia , Mioblastos/patologia , Adenina/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Animais , Metilação de DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
18.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33313674

RESUMO

Although long noncoding RNAs (lncRNAs) have significant tissue specificity, their expression and variability in single cells remain unclear. Here, we developed ColorCells (http://rna.sysu.edu.cn/colorcells/), a resource for comparative analysis of lncRNAs expression, classification and functions in single-cell RNA-Seq data. ColorCells was applied to 167 913 publicly available scRNA-Seq datasets from six species, and identified a batch of cell-specific lncRNAs. These lncRNAs show surprising levels of expression variability between different cell clusters, and has the comparable cell classification ability as known marker genes. Cell-specific lncRNAs have been identified and further validated by in vitro experiments. We found that lncRNAs are typically co-expressed with the mRNAs in the same cell cluster, which can be used to uncover lncRNAs' functions. Our study emphasizes the need to uncover lncRNAs in all cell types and shows the power of lncRNAs as novel marker genes at single cell resolution.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , RNA Longo não Codificante , Análise de Célula Única , Software , Animais , Humanos , Anotação de Sequência Molecular , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética
19.
ACS Appl Energy Mater ; 3(10): 9568-9575, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33134879

RESUMO

Incorporating plasmonic nanostructures is a promising strategy to enhance both the optical and electrical characteristics of photovoltaic devices via more efficient harvesting of incident light. Herein, we report a facile fabrication scheme at low temperature for producing gold nanoparticles embedded in anatase TiO2 films, which can simultaneously improve the efficiency and stability of n-i-p planar heterojunction perovskite solar cells (PSCs). The PSCs based on rigid and flexible substrates with 0.2 wt % Au-TiO2/TiO2 dual electron transport layers (ETLs) achieved power conversion efficiencies up to 20.31 and 15.36%, superior to that of devices with TiO2 as a single ETL. Moreover, 0.2 wt % Au-TiO2/TiO2 devices demonstrated significant stability in light soaking, which is attributed to improved light absorption, low charge recombination loss, and enhanced carrier transport, and extraction with the plasmonic Au-TiO2/TiO2 dual ETL. The present work improves the practicability of high-performance and flexible PSCs by engineering the photogenerated carrier dynamics at the interface.

20.
Chem Commun (Camb) ; 55(29): 4150-4153, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30839990

RESUMO

A general strategy via chemically covalent combination was reported to fabricate heterostructured catalysts of carbon nitride/covalent organic frameworks (CNFs), which show superior photocatalytic activity and higher stability as compared to the conventional heterostructures of CN and COFs connected via van der Waals forces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA